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The stability of incompressible boundary-layer flows on a semi-infinite flat plate 
and the growth of disturbances in such flows are investigated by numerical inte- 
gration of the complete Navier-Stokes equations for laminar two-dimensional 
flows. Forced time-dependent disturbances are introduced into the flow field and 
the reaction of the flow to such disturbances is studied by directly solving the 
Navier-Stokes equations using a finite-difference method. An implicit finite- 
difference scheme was developed for the calculation of the extremely unsteady 
flow fields which arose from the forced time-dependent disturbances. The problem 
of the numerical stability of the method called for special attention in order to 
avoid possible distortions of the results caused by the interaction of unstable 
numerical oscillations with physically meaningful perturbations. A demonstra- 
tion of the suitability of the numerical method for the investigation of stability 
and the initial growth of disturbances is presented for small periodic perturba- 
tions. For this particular case the numerical results can be compared with linear 
stability theory and experimental measurements. In  this paper a number of 
numerical calculations for small periodic disturbances are discussed in detail. The 
results are generally in fairly close agreement with linear stability theory or 
experimental measurements. 

1. Introduction 
The stability of boundary-layer flows on a flat plate and the transition to turbu- 

lence have been the subjects of extensive studies for many years. Nevertheless, 
there still exist a great many unsolved problems which call for a broadening of the 
understanding of many aspects of laminar-turbulent transition in boundary- 
layer flows. According to a survey paper by Stuart (1965) the transition pro- 
cess can be conceived as six successive stages distinctly observable in physical 
experiments. 

For the first stage of the transition process, namely the development of two- 
dimensional Tollmien-SchIichting waves, linear stability theory has been widely 
successful in predicting conditions for which the flow is unstable to periodic dis- 
turbances. The applicability of linear stability theory was verified by the well- 
known experiments of Schubauer & Skramstad (1948), thus establishing this 
theory as a solid basis for use in transition studies. However, these experiments 
aIso clearly laid bare the limits of linear stability theory for the understanding 
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of the entire transition process. Mechanisms and phenomena, following the 
amplification of the Tollmien-Schlichting waves and finally leading to the fully 
developed turbulent flow, cannot be explained by this theory. The flow takes on 
an increasingly three-dimensional behaviour when nonlinear effects play a more 
and more dominant role. Relatively few theoretical models exist (for example, 
Benney t Lin 1960; Greenspan & Benney 1963) and moreover are only applic- 
able to qualitative conclusions for individual phenomena of thelaminar-turbulent 
transition process. Today, the theoretical understanding of transition still lags 
far behind the experimental observations. Even for the first stage of the transi- 
tion process a strengthening of the theoretical basis is required. In  linear stability 
theory a reformulation of the Om-Sommerfeld equation for the case of space- 
amplified disturbances and numerical solutions thereof (Wazzan, Okamura & 
Smith 1968; Jordinson 1970) have enabled direct comparison of the results with 
experimental measurements. However, there still remain many open questions. 
For example, the effects of higher harmonic wave components as well as of finite 
disturbance amplitudes have not been elucidated and the influence of increasing 
boundary-layer thickness also calls for further study. Investigations of this 
nature based on stability-theory analysis become extremely intricate, as was 
demonstrated, for example, by Bouthier (1972, 1973) and Gaster (1974) in their 
investigations of the influence of growing boundary-layer thickness. 

The present work is an attempt to investigate the stability of laminar incom- 
pressible boundary layers and the initial phase of the transition process by direct 
numerical solution of the partial differential equations that describe such flow 
phenomena. The established boundary-layer flow on a semi-infinite flat plate is 
disturbed by forced time-dependent perturbations; then the reaction of this flow, 
i.e. the temporal and spatial development of the perturbations, is determined 
by numerical solution of the Navier-Stokes equations. The numerical model is 
restricted to two-dimensional flows and is therefore only valid as long as two- 
dimensional effects are dominant in the physical flow. Therefore, the present 
approach is mainly applicable to the investigation of the first stage of transition. 
I n  principle, extension to three space dimensions is possible, although the numeri- 
cal complexity and thus the required computation times would then increase 
immensely. This approach to the investigation of the stability of boundary-layer 
flows is entirely different from the classical linear stability theory, which is re- 
stricted to periodic disturbances of small amplitudes. Here, no restriction on the 
form or the intensity of the disturbances is required since the ensuing develop- 
ment of the perturbations is described by the Navier-Stokes equations and no 
linearization is made anywhere. 

I n  this paper only investigations with periodic disturbances of small ampli- 
tudes are discussed. They are compared with linear stability theory, as well as 
with measurements of the experiments by Schubauer & Skramstad (1948) and 
Ross et al. (1970), whichwere also restricted to periodic disturbances of small amp- 
litudes. The main difficulties of this approach arise from the complicated nature 
of the Navier-Stokes equations, which are nonlinear and of fourth order. To date, 
exact closed-form solutions have been achieved only for a few relatively simple 
flow problems. Numerical solutions, mainly employing Gnite-difference methods, 
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have been attempted for a variety of more complicated flows, but the numerical 
approach can become rather involved, even for steady flows. Therefore, more and 
more refined methods and advanced computer systems are required. Difficulties 
increase when calculations of unsteady flows are attempted. Most numerical 
schemes, although treating the complete Navier-Stokes equations for unsteady 
flows, tend to smear the unsteady transient behaviour and thus yield accurate 
results only for large times when the flow has essentially reached a, steady state. 
In  numerically calculated unsteady flows, undesirable effects are frequently 
caused by the excessive artificial viscosity inherent in many popular difference 
schemes (Roache 1972). The present work requires the calculation of the extreme- 
ly unsteady flow fields that arise from the time-dependent perturbations which 
are constantly introduced into the flow field. Therefore, the critical task was the 
development of a finite-difference method that would yield a realistic resolution 
of the time-dependent flow character. Moreover, for this investigation, numerical 
stability for the finite-difference method was a fundamental prerequisite in order 
to elimina.te possible spurious oscillations which might arise from a numerical 
instability, interfere with the physically meaningful disturbances, and thus 
render the numerical results meaningless. 

2. Governing equations 
The flow phenomena to be investigated are described by the complete Navier- 

Stokes equations for two-dimensional laminar incompressible flows. For the 
numerical method the Navier-Stokes equations are used in vorticity-transport 
form (Schlichting 1965) 

-+u-+v- = -- +- (1) 
aw aw a@ 1 a2w a2w 
at ax ay Reax2 aya' 

with vorticity defined as 

and the continuity equation is 

0 = au/ay - (Re)-l a@x, 

au/ax+avlay = o, (3) 

where u and v are the velocity components in the x and y directions respectively, 
the co-ordinate system being defined in figure 2. All variables in (1) to (3) are 
dimensionless and are related to their dimensional counterparts, denoted by 
bars, as follows 

x = Z/L, y = B(Re))/L, t = tU,/L, u = ii/Um, (4) 
v = Z(Re)B/U,, w = ZL/U,(Re)), Re = U,L/v, 

where L is a characteristic length, U, the free-stream velocity and Re a Reynolds 
number (v kinematic viscosity). The y co-ordinate and velocity component are 
stretched by a factor (Re)* to ensure that, in the numerical operations, both co- 
ordinates and both velocity components are of the same order of magnitude. For 
the calculation of the velocity components u and v the two partial differential 
equations 

(Re)-l aZUpx2 + a2Ulay2 = awiay, 
(Re)-la%/a$ + a2v/ay2 = - awlax, 

(5) 

(6) 
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FIGURE 1. Schematio set up of experiments by Schubauer & Skramstad (1948) and Ross et 
al. (1970). Over 8 flat plate, a ribbon vibrates producing Tollmien-Schlichting waves; the 
edge of the boundary layer is shown, starting at  the leading edge of the plate. 

I - . Y " L X  _I 
FIGURE 2. Integration domain. The set up is the same as that in figure 1. 

which are of Poisson type, are used. They are derived by differentiating (2) with 
respect to y and 2 respectively and then using the continuity condition (3). The 
numerical method is then based on the solution of (1), ( 5 )  and (6) in an appropriate 
integration domain which is specified below. 

3. Integration domain 
The approach to this investigation and the final concept of the developed 

numerical method was greatly iduenced by the physical set up (figure 1) in the 
experiments of Schubauer & Skramstad (1948) or Ross et al. (1970). In  these 
experiments the established flow over a long flat plate was periodically disturbed 
by a thin vibrating ribbon within the boundary layer. Then, for small sinusoidal 
disturbances, the development of Tollmien-Schlichting waves was observed. 

For the numerical model the analysis is restricted to the rectangular domain 
ABCD (0 < x < X ,  0 < y < Y )  of figure 2, where the left boundary AD is 
thought of as being downstream of the vibrating ribbon in the physical experi- 
ment. The reaction of the flow to disturbances, which in the numerical model are 
produced along the left boundary AD, is then determined by the numerical 
solution of the Navier-Stokes equations within the specified rectangular domain. 

To produce the disturbances at the left boundary AD, perturbations obtained 
from linear stability theory, for example, may be used. Such perturbations are a 
good approximation of the unsteady flow downstream of the vibrating ribbon 
in the real experiments. Thus, using such boundary conditions, the numerical 
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calculations can be considered a numerical simulation of the physical experiments 
of Schubauer & Skramstad or Ross et al. 

4. Boundary conditions and initial conditions 
One of the major problems of the entire undertaking was the selection of 

appropriate boundary conditions for the numerical method. The difficulties arise 
from the complicated nature of the governing equations. For the nonlinear system 
of partial differential equations (l), ( 5 )  and (6), it  is not generally possible to 
decide whether a problem with any given set of boundary conditions is mathe- 
matically well posed in the sense of Hadamard (1952). Moreover, i t  is not at all 
clear whether Hadamard’s postulates for a well-posed problem are adequate for 
including only physically meaningful solutions. Additional difficulties arise 
because frequently more boundary conditions are required for finite-difference 
formulations, i.e. for the numerical solutions, than would be needed for the 
corresponding differential formulations if exact solutions were possible (Richt- 
myer & Morton 1967). One is therefore confronted with the task of selecting these 
extra conditions (which are not known a priori) in such a way that the numerical 
stability of an otherwise stable method is not adversely affected (see also $ 5 ) .  
Among several other aspects that also have to be considered in this context one is 
of special importance. The boundary conditions to be finally adopted have to be 
such that physically meaningful results can be obtained with a relatively small 
integration domain to ensure that computational costs are kept within acceptable 
limits. 

Extensive numerical experiments were required to arrive a t  boundary condi- 
tions that are satisfactory with respect to the various considerations discussed 
previously. The numerical results of $6  demonstrate that the boundary 
conditions given below are suitable. Especially, the conditions for the down- 
stream boundary BC and the outer boundary CD (figure 2) allow physically 
meaningful results when the length X of the integration domain is at least four 
times the disturbance wavelength of the resulting perturbation flow and when 
the width Y encloses about three boundary-layer thicknesses. 

Boundary conditions for the calculation of the unsteady (disturbed) $ow 
At the wall y = 0 the velocity components are zero. For the calculation of the 
vorticity at the wall a relation is used which can be derived from (6). Thus, 

u(x ,  0, t )  = v(x, 0, t )  = 0, 8w(x, 0, t ) p x  = - a2w(x, 0, t)/ay2. (7)-(9) 
At the downstream boundary x = X the following conditions are employed: 

a2u‘(x, y ,  t ) /W = - a%’(X, y ,  t ) ,  

aZw’(x, y ,  t ) p  = - a2w‘(X, y ,  t ) ,  

82w’(X, y ,  t)/8z2 = - a%’(X, y ,  t ) ,  (12) 

where a is the (real) wavenumber of the resulting perturbation flow (values for 
a can be obtained from corresponding linear-stability-theory calculations as the 
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real part of the complex wavenumber for spatial amplification, or determined 
iteratively as discussed below). The prime denotes the flow variables of the pertur- 
bation flow; they are defined as the difference between the total flow variables 
u, v, w and the corresponding variables of the undisturbed flow, U ,  V ,  S Z :  

u’(x, y, t )  = u@, Y, t )  - Wz, 91, v’(x, 990 = v(X, y, t )  - Vx, y), (131, (14) 

(15) 

Numerical experiments have shown that (lo)-( 12) for the downstream boundary 
were acceptable for the present investigation and were in many ways superior to 
other versions considered. Their decisive advantage is the relatively small up- 
stream influence, which was thoroughly investigated in numerous test calcula- 
tions (Fasell974). If, for example, a = 0 was used as a rather crude assumption 
for a in (10)-(12), results were never affected more than approximately 4 dis- 
turbance wavelengths upstream, whenever the integration domain in the x direc- 
tion enclosed at  least four disturbance wavelengths. 

At the upper boundary y = P zero perturbation vorticity is assumed, while the 
conditions for the perturbation velocity components imply asymptotic decay in 
the y direction, 

(16), (17) 

w’(x, y, t )  = 4x9 y, t )  - Q(x,  9). 

o’ (2, Y ,  t )  = 0, au’(x, Y ,  t)/ay = -a(Re)-*u’(x, Y ,  t ) ,  

W(z, Y ,  t ) /ay = - a(Re)-+v’(z, Y ,  t ) ,  (18) 

where a is again assumed real, as in (lo)-( 12). Conditions (16)-(18) are consistent 
with experimental evidence and linear-stability-theory results according to 
which the perturbation vorticity decays very rapidly in the y direction and is 
practically zero a t  about three boundary-layer thicknesses from the wall. The 
perturbation velocity components, on the other hand, decay rather slowly in the 
y direction. Using (17) and (18) allows, therefore, a relatively small integration 
domain in the y direction since it is not necessary to postulate that u‘ and v’ 
vanish on CD. The boundary conditions (17) and (18) for the outer boundary CD, 
as well as (lo)-( 12) for the downstream boundary BC, can be derived assuming 
neutral periodic behaviour of the perturbation flow near these boundaries. 
However, the use of these conditions does not force strictly periodic behaviour 
upon the flow. Rather, test calculations have shown that, with these conditions, 
damping or amplification of the disturbances is possible even on the boundaries 
themselves. 

h o t h e r  remark concerning the boundary conditions for boundaries CD and 
BC is in order at  this point. To obtain simple relations on these boundaries one 
assumes that a is constant, although numerical results, as well &s linear stability 
theory and experiments, indicate that a varies with X. Using a constant value for 
a in the boundary conditions, however, yields results in which a depends on z, 
even on the boundaries CD and BC. This property was exploited to determine 
iteratively a@), which is then used in the boundary conditions on CD and BC 
since for practical cases a(z) is not known a priori. Even with relatively crude 
initial guesses for a(z) this iteration loop converges rather rapidly. 

At the left boundary x = 0 the disturbances are introduced into the numerical 
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model. Perturbation functions P,, P,, P,, solely dependent on y and t ,  are super- 
imposed on the profiles of the undisturbed flow, for which the Blasius solution, 
denoted by index B, is used: 

u(0, y ,  t )  = UB(0, y )  + m y ,  t ) ,  (19) 

The perturbation functions, which in this particular study are sinusoidal in time, 
are discussed in more detail in FJ 6. 

Initial conditions 
For initial conditions at t = 0 an undisturbed flow field U ,  V ,  Q is assumed 
throughout the integration domain (disturbances are initiated at t > 0), 

U ( Z ,  y ,  0) = W Z ,  Y ) ,  V(Z, Y ,  0) = V ( x ,  Y), w(x,  y ,  0) = W x ,  y ) .  
(22)-(24) 

The undisturbed flow field is obtained by first solving the Navier-Stokes equa- 
tions for the steady flow, i.e. by solving ( l ) ,  (5) and (6) without the term awlat in 
( I ) ,  and using the boundary conditions specified below. 

Boundary conditions for the calculation of the steady (Undisturbed) JEow 
At the wall the conditions are equivalent to those of the unsteady flow calcula- 
tions, 

The conditions for the downstream boundary are 

U ( Z ,  0) = V(Z, 0) = 0, ~Q(z, O ) / ~ Z  = - ~ ' V ( Z ,  O)/ay'. (26)-(27) 

a2u(x, Y ) / ~ z ~  = a2V(X, Y ) / ~ z ~  = a2G(x, y ) / h 2  = 0. (28)-(30) 

These conditions are compatible with the downstream boundary conditions (lo),  
(11) and (12) for the unsteady, disturbed flow when disturbances have not yet 
reached the downstream boundary during the initial, transient stage. Test cal- 
culations have verified that indeed no undesirable disturbances are introduced at 
the downstream boundary during this transient stage when the steady, undis- 
turbed flow is calculated with these conditions. 

For the outer boundary the conditions 

U ( Z ,  Y) = 1, 8V(x,  Y ) /ay  = 0, Q(Z, Y )  = 0 (31)-(33) 

are employed; (32) is derived from the continuity condition (3) taking (31) into 
account. Finally, for the upstream boundary the profiles of the Blasius solution 
are used again, 

The argument could be raised that instead of using as initial conditions the solu- 
tion of the steady Navier-Stokes equations with Blasius profiles at the upstream 
boundary one could use with equal justification the Blasius solution itself in the 
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entire flow field. Indeed, the numerical solution of the Navier-Stokes equations 
for the steady flow yields results that closely agree with the Blasius solution, so 
that plotted profles practically coincide. I n  this study, however, the reaction of 
the flow to very small disturbances is being investigated and therefore the use of 
the Blasius solution could initially cause disturbances of the same order of magni- 
tude as the forced perturbations and thus distort the transient character of the 
flow. Using the solution of the Navier-Stokes equations any such undesirable 
initial distortion of the transient flow is avoided. 

5. Numerical solution 
The problem posed requires first the solution of a boundary-value problem for 

the calculation of the steady flow, i.e. solution of (1) ,  (5) and (6) (without awlat in 
(1)) with boundary conditions (25)-(36). Second, the solution of a mixed initial- 
boundary-value problem for the calculation of the unsteady flow is required, 
i.e. solution of (l), (5) and (6) with boundary conditions (7)-(21) and initial con- 
ditions (22)-(24). The partial differential equations are in both cases of sixth 
order, in contrast to the fourth order of the more customary w, @ formulation 
used in most numerical solutions of the Navier-Stokes equations. The partial 
differential equations are of elliptic type with regard to the space co-ordinates, 
that is, for the calculation of the steady flow, and of parabolic type for the calcula- 
tion of the unsteady flow. 

For the numerical solution of the problem posed, a finite-difference method was 
developed. Such a difference method for the intended investigation of stability 
and transition of boundary-layer flows has to meet a number of requirements in 
order to ensure success. Some of the requirements deemed most important in this 
context are discussed below. 

(i) Stability, convergence. Rigorous mathematical proofs of (numerical) stabil- 
ity and convergence for nonlinear problems as difficult as the one at hand have 
not been accomplished as yet. For the present investigation, however, stability 
of the numerical method is of fundamental importance. Numerical instability is 
frequently exhibited in the form of oscillations which would be hardly discernible 
from the physically meaningful oscillations caused by the introduced forced per- 
turbations. Hence, strong emphasis had to be placed on the development of an 
extremely stable finite-difference method, even for relatively large Reynolds 
numbers, since to see physical instability and the amplification of disturbances 
it is necessary to experiment with Reynolds numbers larger than the critical 
Reynolds number. 

For this particular study, the problem of convergence is not quite as serious. 
However, convergence is not necessarily guaranteed if for a properly posed prob- 
lem the numerioal scheme is stable and consistent as is the case for linear partial 
differential equations of second 0rder.t By experimenting with small periodic 
disturbances one can check empirically the convergence behaviour of the numeri- 
cal method by comparing calculations for various grid sizes with linear-strtbility- 
theory results and experimental measurements. 

t Lax’s equivalence theorem; see Richtmyer & Morton (1967). 
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(ii) Accuracy of second order. For this investigation at least second-order 
accuracy of the numerical method (i.e. the truncation error of the difference 
analogue to the gover&ng equations, initial and boundary conditions at least of 
second order) is required to exclude or minimize undesirable non-physical effects, 
such as artificial viscosity, when mesh intervals of practical sizes are used. Num- 
erical experiments by Cheng (1970) with a simpler model equation have shown 
that an accuracy of at least second order is necessary when solutions are sf  a 
periodic nature. 

(iii) Realistic resolution of the transient character of unsteady flow jields. The 
flow under investigation is of extremely unsteady nature, with the time- 
dependent behaviour of the flow being of special interest. Thus, the difference 
method has to be such that a realistic resolution of the transient character of 
such flow fields is possible in order to enable investigation of unstable pertur- 
bation waves. Many popular time-dependent methods, although based on the 
complete Navier-Stokes equations for unsteady flows, are not applicable because 
the transient character cannot be properly resolved. Results are therefore only 
valid when a steady stah is reached. 

(iv) Eficiency with respect to computational speed and required storage capacity. 
Numerical solutions of the complete Navier-Stokes equations for the type of 
flows investigated here require numerous time-consuming numerical operations 
and therefore computers with large, fast-access computer storage capacity, 
reaching the limits of even modern computer systems, are necessary. A 
prospective difference method for such an investigation has to be extremely 
efficient, i.e. maximizing computational speed and minimizing required computer 
storage capacity as far as possible, in order to be capable at all of undertaking 
an investigation of this nature with the computers available today. 

Of the requirements discussed here, numerical stability is the most stringent 
one and hence has to be given most consideration. For this reason an implicit 
method was chosen. Implicit methods are generally much more stable than their 
explicit counterparts. However, in respect of requirement (iv) preference should 
have been given to explicit methods because they generally demand less fast- 
access computer storage capacity and less numerical and programming skills for 
achieving high computational speed. So, to satisfy requirement (iv) much effort 
had to be dedicated to developing an extremely efficient implicit difference 
method that also met the other requirements discussed previously. 

Implicit Jinite-difference method 
Experimentation with various implicit difference schemes suggested that a 
‘fully’ implicit scheme with three time-levels was the most promising for this 
investigation. In  this context, ‘fully’ implicit means that all difference approxi- 
mations and nodal values for the approximation of governing equations and 
boundary conditions are taken at the most recent time-level, denoted by integer 1 
(see figures 3 and 4). A three-level method is employed to obtain a truncation 
error of second order for the time derivative awlat in (1).  For all space derivatives 
central differences with second-order truncation error are used. 
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The fully implicit difference scheme leads to three systems of nonlinear alge- 

braic equations for the calculation of the unknown grid variables. Therefore, the 
development of efficient algorithms for the solution of very large, nonlinear 
systems of equations was a matter of great importance. For the solution of the 
difference-equation systems a line-iteration method was finally adopted with 
simultaneous iteration of all three equation systems. The line iteration is organized 
such that nodal values on grid lines parallel to the y axis are determined by a 
direct method? while proceeding iteratively in the x direction. A n  important 
advantage that greatly improved the overall efficiency of the method resulted 
from combining the two iteration loops, the lirst required because of the line 
iteration and the second because of the nonlinear terms, into a single iteration 

With this iteration loop the difference equations can be written (i is the itera- 
loop. 

tion index) 

(Ay2/2At)  (t, wk,im - t ,  uL& + t ,  uL$,J + ( A y 2 / 2 A x )  d i - l ( u l  n, m ;+I, '-l m + 2ukfm - 
- u1.i 

2w1.i-1 
n. m 

+ BAydA~~'(uk!m+,-uVm-l)  - (Re)- ,  ( A ~ / A x ) ~  (uk$i:m - 2uVm +  UP!^,^) 
- @ I ,  n,m+l+ i 2 ~ k , i m - u i f m - 1 =  0, (37) 

(38) 

( R e ) - l ( A y / A ~ ) ~ ( u k $ < ~ ~ -  2~$!,,,+~?11,,) + u v m + i -  I t  2U;,m+UA,m-i z i  

- BAy(uCm+,- w., m-1) = 0, Zi  

(Re)-1(Ay/Ax)2  ( V ~ $ Y : ~  - 2&fm + v?L,,) + d~:~;n+i- 2vt n,m i + d;fm-l 
2"l,i-l-"Z.i + ( A y 2 / 2 A x )  (up!;:m + 2uem - n,m n-i ,m) = 0, (39) 

where l < n < N - l ,  l < m < H - l ,  1 = 0 , 1 , 2  ,..., 
and t ,  = t ,  = t3 = 0 for I =  0 (steadyflow), 

(unsteady flow). t ,  = t, = 2, t ,  = 0 for 1 = 1 

t, = 3, t, = 4, t3 = 1 for 1 > 1 

The term 2utlm- 201;E:;l in (37) and (39) has nothing to do with the difference 
approximation as such; the two parts cancel when the iteration has converged 
and are only added to improve the convergence characteristics of the iteration 
loop, especially for high Reynolds numbers. Further considerable improvement 

t Algorithm by Thomas (1949) for tri-diagonal coefficient matrices, modified to include 
simultaneous calculation of vorticity at the wall. 
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FIGURE 4. Grid arrangement in the x, y plane. Comparing with figure 2, 
we see that X = NAx and Y = MAY. 

of the convergence behaviour was achieved by coupling equation systems (37) 
and (39) through the use of (9) taking Pvlay2 at iteration level i. Details of the 
numerical method are discussed elsewhere (Fasel 1974). 

6. Numerical results for periodic disturbances of small amplitudes 
Test calculations for an unstable and a stable bowndary-layer flow 

The numerical method was thoroughly checked on a number of relatively 
small test cases, two of which are discussed here in more detail. They are shown on 
a stability diagram of linear stability theory (figure 5 )  obtained from numerical 
solution of the Orr-Sommerfeld equation for the case of spatial disturbance 
amplification (Wazzan et al. 1968; Jordinson 1970). 

In  the chosen representation of figure 5, dimensionless disturbance frequency 
p* = &/Urn versus Reynolds number Re* = U, S,/v (8, displacement thickness), 
the dimensional disturbance frequency or a dimensionless frequency parameter 
P = lO4j?lv/U2 is constant on rays through the origin. Thus, the perturbation 
conditions of the flow downstream of a constant frequency disturbance correspond 
to points on a ray through the origin. Proceeding from the disturbance location in 
the downstream direction corresponds to moving away from the origin. Dis- 
turbances should therefore become amplified at  downstream locations corres- 
ponding to  points within the unstable region (inside the neutral stability curve) 
and damped at locations corresponding to points in the stable region (outside 
the neutral stability curve). 

The two test cases discussed here are both on the ray P = 1.316 shown in 
figure 5.  For test case 1 the location of the left boundary AD of the rectangular 
integration domain corresponds to a point on the lower branch of the neutral 
stability curve at Be* = 635. When proceeding in the downstream direction the 
unstable region is entered and distrubances should therefore grow. For test 
cme 2 the calculation starts at  Re* = 970, a point inside the unstable region, a 
short distance from the upper branch of the neutral stability curve. Therefore, 
the disturbances should first grow and then decay after the neutral stability 
curve is crossed. 
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FIUURE 5 .  Two test caws on the stability diagram of linear stability theory. On thestraight 

line, 3 and F are constant (see text); in this case P = 1.316. 

For periodic (sinusoidal in time) disturbances the perturbation functions in the 
upstream boundary conditions (19)-(21) can be written 

&(Y, t )  = &2Y) cos (P% 
G(Y7 t )  = 8dY) cos (Pt + $ 7 4  

C(Y7 t )  = & 4 ( Y )  cos (Pt). 

(40) 

(41) 

(42) 
For the present calculations the common amplitude factor was selected so that 
the absolute maximum value of P, was 0.05 yo of the free-stream velocity. The 
so-called amplitude distributions or perturbation profiles ui(y), wi(y), oi(y) 
were taken from numerical solutions of the Orr-Sommerfeld equation for spatial 
amplification (Jordinson 1970, Kummerer 1973). 

The perturbation profiles used in test case 1, for example, are shown in figure 
6 (a),  together with the corresponding phase relations of linear stability theory in 
figure 6(b) (solid curves). However, when using the simple cosine relations in 
(40)-( 42) the phase relations are approximated by the straight (dashed) lines. 
The phase change in the uf and wf perturbations near the wall is taken into account 
in a relatively crude manner by using the dashed curves for the perturbation 
profiles ui and w i  in figure 6 (a). With these perturbation functions any y varia- 
tion in the phase relation is completely neglected. The phase difference of approx- 
imately &r between the uf and d, as well as the wf and d, perturbations is consist- 
ent with linear stability theory and is represented in (40)-(42). 
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0 1 2 3 4 5 6 7 

314 
FIGTJRE 6. (a) Perturbation profiles (amplitude distributions) and ( b )  phaae relations of 

linear stability theory for P = 1,316, Re* = 635. 

Calculation 
Test cme I A > 

& A  A 
1 2 (Step 1) (step 2) B C D 

Ax 0.017 0.017 0.017 0.017 0.014 0.012 0.010 
Ay 0.283 0.432 0.260 0.442 0.234 0.208 0.208 
At 0.026 0.025 0-025 0.025 0.020 0.015 0.013 

TABLE 1. Grid intervals 

For these calculations the grid parameters were selected as follows: in the 2 
direction, 40 intervals were used with Az chosen as approximately & of the 
disturbance wavelength; in the y direction, 48 intervals were used with Y 
approximately 3 boundary-layer thicknesses. The time increment At was chosen 
as approximately & of a time period. The values of the grid intervals used in the 
calculations discussed in this paper are given in table 1. These interval sizes were 
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FIUURE 7 (a). For legend see opposite page. 

adopted after extensive numerical experiments had been conducted to investi- 
gate the convergence behaviour (accuracy) of the method (Fasell974). For this 
purpose selected test cases were recalculated with smaller and smaller interval 
sizes. The interval sizes finally used for the calculations discussed in this paper 
were sufficiently small to warrant accurate enough results for reasonable compari- 
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FIGURE 7. Temporal development of periodically disturbed flow for (a) test case 1, (a) test 
case 2 a t  y/Ay = 3 and four different downstream locations, reading from top to bottom, 
x / b x  = 8,  18, 28, 38. 

son with experimental measurements and linear stability theory while keeping 
computational costs within acceptable limits. For example, calculations with the 
above interval sizes sliced in half lead to  maximum relative deviations in the 
computed perturbation variables always less than 1 yo for any Iocation within the 
integration domain. 

24 F L U  70 
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FIGURE 8. Downstream development of perturbations at y/Ay = 3 for four different time 
levels. (a) Test case 1, (b)  test case 2. The time levels are (1) t/At = 125, (2) t/At = 130, 
(3) t /At  = 135, (4) t/At = 140. 



The stability of boundary layers 371 

For rigorous quantit,ative comparison with linear stability theory, calculations 
with greater accuracy, i.e. smaller interval sizes, would be desirable, requiring, of 
course, much larger computation times. However, this paper does not intend 
to compete in accuracy with linear-stability-theory calculations, something which 
could only be done a t  excessive computational cost ; i t  intends rather to demon- 
strate the suitability of the developed numerical method for stability studies. 

Typical numerical results for the two test cases are shown in figures 7-10. An 
impression of the temporal development of the disturbed flow and of the propaga- 
tion of the time-wise sinusoidal disturbances which are introduced at the up- 
stream boundary can be obtained from figure 7. The flow variables u, w, w are 
plotted for a constant distance y/Ay = 3 versus time t/At at four different down- 
stream x stations, at 8, 18, 28 and 38 x/Ax from the upstream boundary AD. 
After some time has elapsed the flow behaviour is obviously of a periodic nature 
which is first reached near the upstream boundary and last near the downstream 
boundary. This is reasonable since the introduced sinusoidal disturbances should 
propagate d o m t r e a m  with the finite velocity /3/a. For test case 1 in figure 7 (a) 
the amplitudes of the periodic oscillations increase in the downstream direction 
(the scale is the same for all x stations) while for test case 2 in figure 7(b) the 
amplitudes decrease. 

The downstream development of the flow is elucidated more clearly in figure 8, 
where the perturbation variables u’, w’, w’ are plotted against the downstream 
co-ordinate x/Ax for the same constant distance y/Ay = 3 from the wall. In  every 
diagram four different curves are plotted, each corresponding to a different 
time level. At these time levels the flow has already reached a time-wise periodic 
behaviour in the entire flow field, i.e. a quasi-steady state exists. As predicted by 
linear stability theory the curves for test case 1 in figure 8(a)  clearly exhibit 
amplification of the disturbances in the downstream direction. For test case 2 in 
figure 8 (b) first an amplification of the disturbances can be observed followed by 
damping when the neutral curve is crossed. For the u’ and w’ perturbations the 
growth or decay of amplitudes is wave-like, contrary to the w’ perturbations. This 
matter will be brought up again later. 

A survey of the perturbation flow behaviour in the entire integration domain is 
portrayed in figure 9. There, the perturbation profiles (amplitude distributions) 
of the u’, w‘ and w‘ perturbations are plotted a t  every other consecutive x station, 
starting at the left boundary x/Ax = 0 and ending at the right boundary x/Ax = 
40. For a given x station these profiles are obtained by determining at every 
discrete y location the maximum absolute value of the perturbation variables 
over an entire time period. The shapes of the calculated perturbation profiles 
qualitatively resemble those of linear stability theory, with the typical phase 
reversals near the wall for the u’ and w‘ perturbations also being present (the 
profiles plotted at x/Ax = 0 actually are from linear stability theory; they are 
used to disturb the flow). Following the development of the amplitudes in the 
downstream direction for a constant distance y/Ay from the wall, in figure 9 (a) 
for test case 1 a growth of amplitudes can be observed again while for test 
case 2 in figure 9(b) the amplitudes decrease. (The irregular growth or decay 
behaviour of the u’ and w’ perturbations is noticeable again.) In  figure 9 the 

24-2 
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4-2 

FIGURE 9 (a). For legend see opposite page. 

downstream development of the maximum values of the perturbation profiles is 
of special interest: for the w' perturbations they are at the wall, for the u' pertur- 
bations they are close to the wall and for the v' perturbations further away. 

I n  figure 10 these maximum vaIues (made dimensionless with the correspond- 
ing values at ./Ax = 0 )  &re plotted against 2. The aforementioned wavy be- 
haviour of the u> and a; perturbation amplitudes is now clearly observable. The 
v; perturbations, however, do not show such behaviour. For better comparison 
of the amplification rates the median curves of the w> and w; perturbation ampli- 
tudes are also plotted in figure 10. Additional investigations indicated that the 
wavy character is caused by the relatively crude phase relationships in the per- 
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FIGURE 9. Perturbation profiles (amplitude distributions) a t  every other consecutive down- 
stream location. (a) Test cam 1, (b)  test cam 2. 

turbation functions (40)-( 42). When using, for example, phase relationships 
&s obtained from linear stability theory, the numerical calculations yield results 
for which such behaviour is virtually absent. This context can be explained 
as follows: when using the phase relationships of linear stability theory, the con- 
dition 

P r n  

J - d d y  = 0 
0 

is always satisfied during the entire time period of the sinusoidal cycle. However, 
with the crude phase relationships used for the calculations here, this condition is 
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violated. This causes an additional oscillatory mode with the same frequency 
(as the primary disturbance wave) which is superimposed on the basic Blasius 
flow. Thus these calculations, strictly speaking, can be considered as a stability 
investigation of a slightly oscillating boundary-layer flow with identical 
frequencies to the oscillating basic flow and the generated sinusoidal disturb- 
ances. It should be mentioned, however, that the amplitudes of the resulting 
oscillatory modes in the basic flow are so small that the amplification rates (median 
curves in figure 10) are not affected when phase relationships of linear stability 
theory are used, i.e. when the oscillatory mode of the basic flow is avoided. 

The amplification curves in figure 10 clearly show for test case 1 (figure 10a) 
the predicted growth of the disturbance amplitudes while for test case 2 (figure 
l o b )  the disturbance amplitudes a t  first grow and then decrease after the neutral 
stability curve is crossed. It can also be observed that the growth rates for the 
u', v' and w' perturbations differ from one another. In  fact, amplification curves 
for different constant distances from the wall would all be different. This pheno- 
menon is in contrast to classical linear stability theory, where for the case of 
space-wise amplification the amplification rate is independent of the wall dis- 
tance. However, these findings are in agreement with experimental evidence 
(Ross et al. 1970; see also Jordinson 1968) and more recent stability investigations 
(Bouthier 1972, 1973; Gaster 1974). 

The results for the two test cases discussed here, as well as for a number of other 
calculations of a similar nature, have demonstrated at least qualitative agreement 
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400 500 
Re* = U,S,lv 

FIGURE 11. Calculations A, B, C, D on stability diagram of linear Stability theory. The values 
of F which correspond to the calculations are (A) 1.316, (B) 1.6, (C) 2.0 and (D) 2.4. 

with linear stability theory: disturbances were amplified in the unstable region 
and damped in the stable region of linear stability theory. 

Comparison of numerical results with linear stability theory and experiments 
For a more quantitative comparison with linear stability theory and experimen- 
tal measurements, calculations were made for which the entire region of in- 
stability is traversed on rays F = constant as shown in figure 11. The calculations 
start in the stable region and, after traversing the unstable region inside the 
neutral curve, end again in the stable region. Calculation A with F = 1-316 con- 
sists of two steps: the first step from Re* = 500 to Re* = 850 and the second step 
from Re* = 850 to Re* = 1100. For calculations B, C and D the region of in- 
stability is traversed in a single step. (For values of the grid intervals used in 
these calculations see table 1.) 

For the two-step calculation the perturbation variables uf , d, w’ are plotted in 
figure 12 against x/Ax. The perturbation variable d for calculations B, C and D is 
shown in figure 13 against XIAX. As before, there are four curves in each diagram 
corresponding to four different time-levels after the quasi-steady state was 
established. The curves in figure 12(a) for step 1 of calculation A first exhibit 
decay of the disturbance amplitudes until the lower branch of the neutral 
stability curve is reached whereupon the amplitudes increase. In  figure 12 (b) for 
step 2 the disturbances continue to grow in the downstream direction until they 
reach the location of the upper branch of the neutral curve and are damped from 
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FIQURE 12. Downstream development of perturbations at y/Ay = 3 for four different time 
levels. Calculation A, (a) step 1, thevaluesoft/Atare (1) 285, (2) 290, (3) 295, (4) 300; (a) step 
2, the values of t/At are (1) 298, (2) 300, (3) 305, (4) 310. 

there on. In figure 13 for calculations B, C and D, for which the unstable region is 
traversed in a single step, it is possible to observe damping of the disturbances in 
the stable region, amplification in the unstable region and again damping in the 
stable region. With increasing disturbance frequencies (frequencies increase 
from A to D) the transition from damping to amplification at the lower branch 
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FIGURE 13. Downstream development of v' perturbations at y / A y  = 3 for four different 
time levels. (a) Calculation B, the values of t /At are ( 1 )  485, (2) 490, (3) 495, (4) 500; (a) cal- 
culation C ,  t /At  = (1) 386, (2) 390, (3) 395, (4) 400; (c) oalculation D, t / A t  = (1) 355, (2) 360, 
(3) 365, (4) 370. 

of the neutral stability curve becomes less and less pronounced; for calculation 
D any such transition is hardly noticeable at all. 

I n  figure 14 the amplification curve, which is obtained from the inner maximum 
of the u' perturbation profles for calculation A, is compared with appropriate 
experimental points by Ross et al. (1970) (see also Jordinson 1968; Barnes 1966). 
Direct comparison with the experimental points (which are from root-mean- 
square value measurements from the inner maximum of the u' perturbations) is 
admissible since in both cases the amplitude values are normalized by their res- 
pective minima. Additionally, in figure 14 two amplification curves of linear 
stability theory are shown for comparison, one obtained from a numerical solu- 
tion of the Orr-Sommerfeld equation (Jordinson 1968, 1970; Kiimmerer 1973) 
and the other from the solution of a modified Orr-Sommerfeld equation for which 
the growth of the boundary layer is, to some extent, taken into account (Barry & 
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FIGURE 14. Comparison of disturbance amplification (maximum of u’ perturbations) for 
calculation A with linear stability theory and experimental measurements. --, numerical 
solution of Navier-Stokes equations; - - -, numerical solution of Orr-Sommerfeld equation; 
_._._ , numerical solution of modified Orr-Sommerfeld equation; 0,  experimental 
measurements for P = 1.32 (Ross et al. 1970). 

FIQURE 15. Comparison of amplification curves (maximum of u’ perturbations) for calcula- 
tions B, C and D with linear stability theory. -, numerical solution of Navier-Stokes 
equations; --- , numerical solution of Ord3ommerfeld equation. €3, F = 1.6; C, F = 2.0; 
D, P = 2.4. 
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Ross 1970; Kummerer 1973). The solution of the Navier-Stokes equations yields 
stronger amplification than either curve of linear stability theory and is in better 
agreement with the experimental measurements, especially for the second 
calculation step. The better agreement for the second step can possibly be 
explained by the fact that the perturbation profiles for the perturbation functions 
a t  the left boundary were taken from the Navier-Stokes solution a t  the right 
boundary of the calculation in step 1. The perturbation profiles for the perturb%- 
tion functions in step 1 were from linear stability theory. 

Amplification curves (again for the inner maximum of the u' perturbations) for 
calculations B, C and D are compared in figure 15 with corresponding curves 
from numerical solutions of the Orr-Sommerfeld equation (Jordinson 1968, 
1970; Kiimmerer 1973). Experimental measurements were not available for these 
cases. For all calculations, the Navier-Stokes solutions give again stronger 
disturbance amplification than linear stability theory. Moreover, the Navier- 
Stokes calculations lead to larger regions of instability since the neutral points 
(points of the amplification curves with zero slope) corresponding to the lower 
branch of the neutral stability curve are a t  lower Reynolds numbers than those of 
linear stability theory. (This context will become more obvious in the discussion 
of figure 17.) 

A comparison of perturbation profiles and corresponding phase relations 
for a Reynolds number Re* = 700 obtained from calculation A and from linear 
stability theory is presented in figure 16. The perturbation profiles of linear 
stability theory are normalized such that the maximum value of the u; profile is 
equal to the corresponding value of the Navier-Stokes calculation. The e: per- 
turbation profile of the Navier-Stokes solution is somewhat below that of linear 
stability theory. This is consistent with the fact that different amplification rates 
were obtained for the different perturbation variables (figure 10). Certain devia- 
tions are also present near the locations where the phase shift occurs for the u' 
and w' perturbations, since the profiles of the Navier-Stokes solution do not 
reach the y axis. This effect may be attributed to the possible existence of other 
harmonic wave components which are not excluded when the perturbation 
profiles are determined in the manner previously described. From experi- 
ments (Ross et al. 1970; see also Barnes 1966) it  is known, for example, that the 
locations of the phase reversals for the first and second harmonic waves are not 
identical. 

The agreement of the phase relations obtained from the Navier-Stokes calcu- 
lations with those of linear stability theory is extraordinarily good, especially 
when considering the rather crude phase relations used for the perturbation 
functions a t  the left boundary, where no y variation was admitted a t  all. Thus, 
the Navier-Stokes solution verifies the linear stability theory phase relations 
which are, particularly for the w' perturbations, rather peculiar near the wall. 

Finally, in figure 17 some neutral points of the Navier-Stokes solutions are 
shown on a stability diagram of dimensionless frequency parameter _F versus 
Reynolds number Re*. These points are determined from the high and low points 
of the amplification curves in figures 14 and 15 for the inner maximum of the 
u' perturbations. For comparison, neutral points are shown which were obtained 
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FIGURE 16. Comparison of perturbation profiles and phase relationships with linear stability 
theory. Calculation A, Re* = 700. - , numerical solution of Navier-Stokes equations; 
- --, numerical solution of Orr-Sommerfeld equation. 

experimentally by Schubauer & Skramstad (1948) and Ross et al. (1970). The 
neutral points by Schubauer & Skramstad are from measurements made at 
some unspecified position below the inner maximum of the root-mean-square 
values of theu’ perturbations. The neutral points by Ross etal. are from rneasure- 
ments made at the position of the inner maximum, thus corresponding to the 
neutral points obtained numerically from the present Navier-Stokes calcula- 
tions. The numerical results are also compared with three neutral curves of 
theoretical studies. One neutral curve was obtained from a numerical solution of 
the Orr-Sommerfeld equation (Jordinson 1970). A second curve was obtained 
from a numerical solution of a modified Orr-Sommerfeld equation for which 
additional terms, due to the vertical components of the mean flow, were included 
(Barry & Ross 1970; Kummerer 1973). The third theoretical curve is the appro- 
priate neutral curve (for the inner maximum of u’) of Gaster’s (1974) investiga- 
tion of the effects of boundary-layer growth on stability. 

For the right branch of the neutral stability curve the neutral points of the 
Navier-Stokes calculations agree quite well with the experimental points and 
the theoretical curves. For the left branch the calculated neutral points are a t  
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F r a m  17. Comparison of neutral points with linear stabaty theory and experimental 
measurements. -, numerical solution of Orr-Sommerfeld equation; - --, numerical 
solution of modified On-Sommerfeld equation; -*-*- , numerid investigation (Gaster 
1974); + , experimental measurements (Schubauer & Skramstad 1948); 0, experimental 
measurements (Ross et al. 1970); 9, numericd solution of Navier-Stokes equations. 

somewhat lower Reynolds numbers than the theories predict and are in slightly 
better agreement with the experimental points of Ross et al. The discrepancy 
between experimental points and linear stability theory increases with higher 
disturbance frequencies, while the neutral points of the Navier-Stokes solutions 
seem to show a clear tendency towards the experimental points. However, more 
calculations with higher frequencies are required to support this speculation. 

7. Conclusion 
The results of the numerical calculations discussed here indicate that the pre- 

sented numerical method for the solution of the Navier-Stokes equations is 
applicable for the investigation of stability and initial transition phenomena of 
incompressible, two-dimensional boundary-layer flows. The method has been 
subjected to critical numerical test calculations with periodic disturbances where 
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the results gave good agreement with linear stability theory or physical experi- 
ments. The conjecture is that this method can now be applied with some confi- 
dence to the investigation of a number of questions concerning stability and the 
growth of disturbances leading to transition which could not be resolved by linear 
stability theory. Of special interest would be, for example, a closer study of the 
region of instabiIity for higher disturbance frequencies (see figure 17) where 
considerable discrepancy exists between experiments and linear stability theory. 
Further, i t  shouldbe possible to investigate theinfluence of higher harmonic wave 
components, and experimentation with larger disturbance amplitudes should 
allow some insight into the effects of finite amplitudes on stability and transition. 

This research was supported by the Deutsche Forschungsgemeinschaft, Bonn- 
Bad Godesberg, contract Ep  511-5/4. 
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